Grand Riemann hypothesis
In mathematics, the grand Riemann hypothesis is a generalisation of the Riemann hypothesis and Generalized Riemann hypothesis. It states that the nontrivial zeros of all automorphic L-functions lie on the critical line 1/2 + it with t a real number and i the imaginary unit.
The modified grand Riemann hypothesis is the assertion that the nontrivial zeros of all automorphic L-functions lie on the critical line or the real line.
Notes
- It is widely believed that all global L-functions are automorphic L-functions.
- The Siegel zero, conjectured not to exist, is a possible real zero of a Dirichlet L-series, rather near s = 1.
- L-functions of Maass cusp forms can have trivial zeros which are off the real line.
References
- Borwein, Peter B. (2008), The Riemann hypothesis: a resource for the afficionado and virtuoso alike, CMS books in mathematics, 27, Springer-Verlag, ISBN 0387721258
‹The stub template below has been proposed for renaming to . See stub types for deletion to help reach a consensus on what to do.
Feel free to edit the template, but the template must not be blanked, and this notice must not be removed, until the discussion is closed. For more information, read the guide to deletion.›